Рефераты, дипломные проекты и тд. Скачать бесплатно!

Категории работ

Социология

Менеджмент (Теория управления и организации)

Психология, Общение, Человек

Культурология

Технология

Химия

История

Материаловедение

Историческая личность

Политология, Политистория

Международные экономические и валютно-кредитные отношения

Гражданская оборона

Экономическая теория, политэкономия, макроэкономика

Теория государства и права

Литература, Лингвистика

Искусство

Философия

Физкультура и Спорт

История экономических учений

Бухгалтерский учет

Маркетинг, товароведение, реклама

Религия

Педагогика

Медицина

Банковское дело и кредитование

Налоговое право

Криминалистика и криминология

Уголовное право

Российское предпринимательское право

Техника

Компьютерные сети

Математика

Микроэкономика, экономика предприятия, предпринимательство

Семейное право

Физика

Биология

Музыка

География, Экономическая география

Здоровье

Программирование, Базы данных

Международное частное право

Программное обеспечение

Теория систем управления

Охрана природы, Экология, Природопользование

Иностранные языки

Сельское хозяйство

Государственное регулирование, Таможня, Налоги

Компьютеры и периферийные устройства

Транспорт

Разное

Ценные бумаги

Римское право

Москвоведение

Правоохранительные органы

Космонавтика

Трудовое право

Астрономия

История государства и права зарубежных стран

Гражданское право

Радиоэлектроника

Страховое право

Военная кафедра

Право

Таможенное право

Прокурорский надзор

Конституционное (государственное) право России

Юридическая психология

Уголовный процесс

Подобные работы

Анализ лекарственной формы состава: Rp.: Amidopyrini 0,3 Dibazoli 0,02

echo "Водные растворы имеют щелочную реакцию среды. Проявляет свойства восстановителя, с ионами тяжёлых металлов образует устойчивые комплексы. Реакции подлинности на амидопирин основаны на его спос

Полимер

echo "Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих

Углерод и его соединенния

echo "Поэтому все четыре АО принимают участие в образовании химических связей. Этим объясняется разнообразие и многочисленность соединений углерода. Подавляющее большинство соединений углерода относя

Фтор

echo "Первое соединение фтора - флюорит (плавиковый шпат) Ca F 2 - описано в конце 15 века под на з ванием 'фл ю ор' (от латинского fluo - теку , по свойству Са F 2 делать жидкотекучими вя з кие шлаки

К вопросу о металлической связи в плотнейших упаковках химических элементов

echo "Нетрудно заметить , что четыре гибридные орбитали направлены по четырем т е лесным диагоналям куба и хорошо приспособлены для связи каждого атома с его 8 соседями в кубической объемноцентрирован

Дмитрий Иванович Менделеев и его Система элементов

echo "Водород, как легчайший элемент, по справедливости избирается как самый типический. 5.Величина атомного веса определяет характер элемента, как величина частицы определяет свойства сложного тела,

Источники и виды загрязнения атмосферного воздуха

echo "Сохранение теплоты Земли и защита живых организмов от губительных доз космического излучения, источник кислорода для дыхания, углекислого газа для фотосинтеза, энергии и разнообразных химических

Бром

echo "Содержание брома в земной кор е (1,6 * l0 -4 % по массе) оценивается в 10 15 -10 16 т. В главной своей массе бром находится в рассеянном состоянии в магматич еских породах, а также в широко расп

Высоко-молекулярные соединения

Высоко-молекулярные соединения

Огромные размеры молекул явл. ответственными за большинство физических с-в растворов ВМС, отличающихся от низкомолекулярных соединений. На поведение растворов ВМС сильное влияние оказывают форма и отдельные фрагменты строения микро молекул. 2. ЭЛЕКТРИЧЕСКИЕ, МОЛЕКУЛЯРНО – КИНЕТИЧЕСКИЕ И ОПТИЧЕСКИЕ С-ВА РАСТВОРОВ ВМС. Заряд частицы ВМС. Изоэлектрическая точка (ИТ). Одной из важных проблем, возникающих при изучении ВМС, явл. проблема появления на поверхности молекул заряда, который возникает по разным причинам.

Поверхность ВМС может иметь собственный заряд, возникающий благодаря расположенным на ней анионным и катионным группам.

Заряженная поверхность явл. одной из особенностей крупных частиц, отличающей их от обычных низкомолекулярных растворенных в-в. наличия заряда у част Доказательством наличия заряда у частицы ВМС явл. ее поведение при электрофорезе: заряженная частица, присутствующая в растворе, в частности микромолекула, под действием электрических сил движется к электроду противоположного знака. Для белков между зарядом молекул и электрофоретической подвижностью существует прямая пропорциональная зависимость в широком интервале рН.

Значение рН, при котором электрофоретическая подвижность белка равна нулю, называется изоэлектрической точкой . В кислой среде, когда в результате избытка водородных ионов подавлена ионизация карбоксильных групп, молекула белка ведет себя как основание, приобретает положительный заряд и при электрофорезе движется к катоду. В щелочной среде, наоборот, подавлена ионизация аминогрупп, и молекула белка ведет себя как кислота и при электрофорезе передвигается к аноду. В изоэлектрическом состоянии с-ва растворов белков резко меняется: при этом они имеют, наименьшую вязкость, плохую растворимость. При значении рН, близком к изоэлектрической точки, разноименно заряженное группы - NH 3 + и COO - притягиваются друг к другу и нить закручивается в спираль.

Молекулы ВМС в развернутом состоянии придают растворам более высокую вязкость, чем молекулы ВМС, свернутые в спираль или клубок. .

Вязкость . Вязкость растворов, обычно выше вязкости растворов низкомолекулярных соединений и коллойдных растворов тех же концентраций.

Высокую вязкость растворов ВМС объясняли большой сольватацией макромолекул. А. В. Думанский поэтому ввел уравнение Эйнштейна поправку, учитывающую сольватацию где j - доля объема суспендированных частиц в единице объема суспензии V - сольватный объем частиц дисперсной фазы.

Основной причиной отклонения вязкости растворов ВМС является взаимодействие вытянутых и гибких макромолекул, часто образующих структированные системы (ассоциаты). Ассоциаты сильно увеличивают вязкость растворов.

Вязкость растворов ВМС сложным образом связано с формой макромолекул и характером межмолекулярных взаимодействий. При исследовании растворов ВМС часто используют значение характеристической вязкости обозначаемой через [ h ]

Удельная вязкость связана с относительной вязкостью выражением.
Общая формула модифицированного уравнения Штаудингера Где К и а – эмпирические константы М – молекулярная масса.

Осмотическое давление растворов ВМС. Согласно уравнению Вант – Гоффа осмотическое давление растворов увеличивается прямо пропорционально концентрации. Для ВМС эксперимент показывает, что осмотическое давление значительно выше чем это требуется по закону Вант – Гоффа. Чем более гибка молекула, тем при прочих равных условиях осмотическое давление выше и тем больше оно отклоняется от значения, вычисленного по уравнению Вант – Гоффа. Для описания зависимости осмотического давления предложено уравнение

или
Где С – концентрация, М – относительная молекулярная масса полимера, В – некоторый коэффициент характеризующий отклонение от уравнения Вант – Гоффа.

Светорассеяние и поглощение света.

Цепные молекулы полимеров нельзя обнаружить в растворах при ультрамикроскопических наблюдениях.

Растворы ВМС характеризуются светорассеянием.

Изменение величины рассеяния света используют в методе определения относительной массы полимеров. Метод основан на измерении мутности разбавленных растворов ВМС. Инфокрасные спекторы поглощения ВМС очень сложны и их редко используют при исследовании растворов ВМС, но они играют важную роль в современных исследований твердых полимеров.

Набухание и растворение ВМС. Набухание представляет собой самопроизвольный процесс поглощение ВМС больших объемов низкомолекулярной жидкости, сопровождающейся значительным увеличением объема ВМС. В процессе растворения ВМС происходит главным образом диффузия молекул растворителя в высокомолекулярное в – во. Это обусловлено двумя факторами: 1. Большей подвижностью маленьких по сравнению с макромолекулами ВМС молекул растворителя 2. Неплотной упаковкой макромолекул ВМС. Процесс проникновения молекул растворителя в макромолекулы ВМС приводит к тому, что при набухании объем полимера всегда увеличивается, а объем всей системы уменьшается.

Уменьшение объема системы при набухании, называемая контракцией, в большинстве случаев описывается следующим эмпирическим

уравнением с двумя константами. где V – концентрация; m - масса жидкости, поглощенной при набухании одного кг. полимера ( степень оводнения); a и b - константы.

Концинтрация системы при набухании полимера объясняется ориентацией молекул растворителя в результате их «поглощения» макромолекулами , что способствует увеличению плотности системы. На первой стадии взаимодействия ВМС и низкомолекулярной жидкости образуется гетерогенные системы, состоящая из ВМС и свободной низкомолекулярной жидкости.

Суммарный тепловой эффект при набухании ВМС обычно положительный.

Набухание представляет собой специфическую стадию процесса растворения ВМС, а весь процесс растворения можно разделить на четыре стадии. 1. Исходная стадия.

Система гетерогенна, двухфазна: чистая низкомолекулярная жидкость и чистый полимер Ж 1 + Ж 2 . 2. Стадия набухания.

Система расслаивается на две жидкие фазы : одна фаза – раствор низкомолекулярного компонента в компоненте ВМС Ж 1 ® Ж 2 , где Ж 2 – набухший ВМС, а Ж 1 чистая низкомолекулярная жидкость.

Вторая фаза представлена чистой низкомолекулярной жидкостью. 3. Стадия образования второго раствора Ж 2 ® Ж 1 4. Стадия полного растворения – превращение гетерогенной (двухфазной) системы галогенной Ж 1 ® Ж 2 . Различают два вида набухания – неограниченное и ограниченное.

Неограниченное представляет собой набухание, последовательно переходящее через все четыре стадии в полное растворение, то есть с образованием однофазной системы. Так набухают каучуки в бензоле, нитроцеллюлоза в ацетоне, белок в воде, целлюлоза в ацетоне, белок в воде, целлюлоза в медно – аммиачном растворе.

Ограниченное – набухание, не переходящее в полное растворение, останавливающееся на второй или третьей его стадии. Так набухают при комнатной температуре желатина и целлюлоза в воде.

Степень набухания и скорость набухания. С тепень набухания a определяется массой жидкости ( в кг ), которая поглощается на данной стадии набухания и при данной температуре 1 кг высокополимера :

С корость набухания (имеется в виду ограниченное набухание) обычно выражают в объемных единицах, поскольку в непрерывном процессе набухания удобнее вести наблюдение за изменением объема ( в особых приборах – дилатометрах).
Уравнение кинетики набухания в простейшем виде может быть дано известным уравнением реакции первого порядка показывающем, что скорость набухания прямо пропорциональна разности между предельным объектом набухшего ВМС V и объемом V t в момент времени t и обратно пропорционально первоначальной толщине l слоя набухающего полимера.

Константа скорости набухания k зависит от природы полимера и растворителя.

Факторы набухания. На степени скорость набухания одного и того же ВМС в одном и томже растворителе влияют такие факторы, как температура, давление, pH среды, присутствие посторонних в – в, в особенности электролитов, степень измельчённости полимера, (возраст) полимера. При повышении температуры скорость набухания увеличивается, а степень предельного набухания уменьшается.

Влияние pH среды хорошо изучено для белков и целлюлозы.

Минимум набухания лежит в области изоэлектрической точки (для желатины, например, при pH 4,7 ), по ту и другую сторону от этой точки степень набухания возрастает и, для сильных максимумув (из них большой в кислой зоне при pH 3,2), вновь уменьшается. На скорость набухания влияет повышение степени измельченности.

Влияние возраста всегда однозначно: чем свежее (моложе) ВМС, тем больше степень набухания и скорость набухания.

Давление набухания.

Ярким проявлением процесса набухания является увеличение объема набухшего тела. Если создать препятствие увеличение объема набухающего тела, то при этом развивается давление, вызываемое давлением набухания p H . где K – константа, зависящая от природы полимера и растворителя; n – константа, почти не зависящая от стиля природы последних и в среднем приблизительно равна 3; С – концентрация выраженная в кг сухого ВМС в 1м 3 образовавшаяся системы.

Нарушение устойчивости растворов ВМС. Все процессы нарушения устойчивости растворов ВМС связаны с переходом от полного растворения ВМС к ограниченному растворению или к нерастворимости.

Изменение растворимости ВМС может быть вызвана либо понижением температуры, либо изменением состава раствора путем добавления жидкости, в которой ВМС не растворяется. Чаще всего нарушение устойчивости растворов ВМС связывают с введением в раствор электролитов.

Нарушение устойчивости растворов ВМС при введении электролитов нельзя отождествлять с коагуляцией лиофобных коллоидов.

Коагуляция золей происходит при введении малых концентраций электролита и представляет собой обычное необратимое явление.

Механизм коагуляции лиофобных коллоидов и нарушение устойчивости ВМС различны.